Ministry of Education and Science of Ukraine Dnipro University of Technology

MINING FACULTY DEPARTMENT OF TRANSPORT SYSTEMS AND TECHNOLOGIES

"APPROVED"	
Head of Departme	nt
Shirin L.N. <u>Alllu</u>	· ju
" <u> </u>	_ 2018

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

" Processes of underground storage of hydrocarbons"

Specialty	185 Oil and Gas Engineering and Technology Bachelor Oil and Gas Engineering and Technology English			
Academic degree Academic program Language of study				
Prolonged: for 20 / 20 academic year	r _{re, name, date)} () "" 20			
for 20 / 20 academic year				

Dnipro NTU "DP" 2018 Work program of the academic discipline "Processes of underground storage of hydrocarbons" for bachelor's specialty 185 "Oil and Gas Engineering and Technology" / L.N.Shyrin, Fedorenko EA / NTU "Dnipro Polytechnic" Department of transport systems and technologies. - DA: NTU «DP» 2018 - 13 p.

Autors:

Shirin LN, professor of transport systems and technologies

Fedorenko EA, assistant professor of transport systems and technologies

The work program regulates:

- key goals and objectives;
- the disciplinary learning outcomes generated through the transformation of the intended learning outcomes of the degree program;
- the content of the discipline formed according to the criterion "disciplinary learning outcomes";
 - the discipline program (thematic plan by different types of classes);
 - distribution of the discipline workload by different types of classes;
- an algorithm for assessing the level of achievement of disciplinary learning outcomes (scales, tools, procedures and evaluation criteria);
- criteria and procedures for evaluating the academic achievements of applicants by discipline;
 - the contents of the educational and methodological support of the discipline;

The work program is designed to implement a competency approach in planning an education process, delivery of the academic discipline, preparing students for control activities, controlling the implementation of educational activities, internal and external quality assurance in higher education, accreditation of degree programs within the specialty.

CONTENTS

1 DISCIPLINE OBJECTIVES	4
2 INTENDED DISCIPLINARY LEARNING OUTCOMES	
3 BASIC DISCIPLINES	4
4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES	5
5 DISCIPLINE PROGRAM BY TYPES OF CLASSES	5
6 KNOWLEDGE PROGRESS TESTING	6
6.1 GRADING SCALES	6
6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES	7
6.3 EVALUATION CRITERIA	8
7 TOOLS, EOUIPMENT, AND SOFTWARE	11

1 DISCIPLINE OBJECTIVES

In the educational and professional programs of the Dnipro University of Technology specialty 185 "Oil and gas engineering and technology", the distribution of program learning outcomes (NRN) for the organizational forms of the educational process is done. In particular, the following learning outcomes are attributed to the discipline V2.15"The processes of underground storage of hydrocarbons ":

VR2.1	Create elements of the technology of extraction, transportation and storage of			
	carbohydrate energy			
VR2.3	Calculate and adjust the modes of gas-oil supply for various conditions			
VR2.4	Use practical methods of diagnosis efficiency of gas-oil supply			
VR2.5	To ensure the safety of the components of the gas oil supply in accordance with the			
	operating rules			
VR2.6	Assess the quality and restore the properties of the elements of the gas oil supply for			
	specific conditions			
VR2.7	Provide regulatory and technical support for the creation, operation and recovery systems			
	and energy storage technologies carbohydrate			

The objective of discipline - formation of learning outcomes to ensure the reliability of the systems storage of oil and gas.

The implementation of the objective requires transforming program learning outcomes into the disciplinary ones as well as an adequate selection of the contents of the discipline according to this criterion.

2 INTENDED DISCIPLINARY LEARNING OUTCOMES

Code	Disciplinary learning outcomes (DRN)			
NRN	DRN code	content		
VR2.1	VR2.1-V2.15	analyze technological and computational circuit elements of technical		
		drilling wells for the injection and the selection of underground storage		
		of hydrocarbons.		
VR2.3	VR2.3- V2.15	characterize the basic elements of storage of oil and gas		
VR2.4	VR2.4- V2.15	know the basics of creating elements of technological schemes and		
		technical devices for pumping and selection hydrocarbons from		
		underground		
VR2.5	VR2.5- V2.15	be aware of the construction features of the collection and preparation of		
		hydrocarbons for transport		
VR2.6	VR2.6- V2.15	to know about controls and processes to ensure the diagnosis of		
		underground storage of hydrocarbons		
VR2.7	VR2.7- V2.15	know the basics of normative and technical support processes of		
		environmental protection within the underground hazonaftoshovysch		

3 BASIC DISCIPLINES

Subjects	The acquired learning outcomes
F2 Fundamentals of Oil and Gas	understanding of the problems of oil and gas exploration,
business	development patterns oil and GasIts place in society
	development, engineering and technology
F14 Drilling (oil and gas)	determining the process parameters of injection and
	production wells in the development of Oil and Gas
F13 Fundamentals of transport and	know the functionality of the preparation of oil and gas

Subjects	The acquired learning outcomes
storage of hydrocarbons	transportation, storage technologies hydrocarbons and
	especially their distribution among consumers

4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES

	ad	Distribution by forms of education, hours					
Type of	slo ars	Full-time		Part-time		Distance	
classes	Worklo	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)
Lectures	80	26	54	14	66	6	74
Practical	40	13	27	6	34	4	36
Laboratory	-	ı	-	-	-	ı	-
Workshops	-	- 1	-	-	-	-	-
Total	120	39	81	20	100	10	110

5 DISCIPLINE PROGRAM BY TYPES OF CLASSES

Ciphers DRN	Types and topics of training sessions LECTURES	The volume of components, hours
VR2.1-V2.15	1 General information about gas supply system	9
VR2.3- V2.15	Preface.	-
	1.1 Structure of the existing mains	
	1.2. Features gas consumption modes	
	1.3 Methods compensation seasonal, daily and hourly fluctuations	
	in gas consumption	
	1.4 Industrial appointments and tasks gas storage	
VR2.3- V2.15	2 Types of gas storage facilities and conditions for their	9
	functioning	
	2.1 Purpose and conditions of the location of underground gas	
	storage	
	2.2 Performance indicators UGS	
	2.3 The effectiveness of the PSC and the requirements for them	
	2.4 Performance indicators UGS	
VR2.1-V2.15 VR2.3- V2.15	3Modes gas deposits in the operation of UGS	9
VR2.3- V2.15	3.1 Gas mode UGS	
	3.2 Water mode UGS	
	3.3 Technological stages of obtaining gas	
	3.4 Schematic flowsheet and conditions of the arrangement UGS	
	3.5 buffer gas underground storage	
	3.6 Estimated parameters of underground gas storage	
VR2.4- V2.15	4Flow charts and processes underground storage facilities	9
VR2.5- V2.15 VR2.6- V2.15	4.1 Overview of process gas storage	
VIC2.0- V 2.13	4.2 The process gas injection	
	4.3 The selection process gas from storage facilities	
	4.4 The processes of cleaning and drying gas	
	4.5 Operating underground gas storage	

Ciphers DRN	Types and topics of training sessions	The volume of components, hours
	4.6 Tank-drilling operation analogy UGS	
VR2.4- V2.15	5 Features of underground gas storage in depleted gas fields	9
VR2.5- V2.15 VR2.6- V2.15	5.1 Features of operation of UGS in depleted gas fields	
VK2.0- V2.13	5.2. Calculation of the gas injection into the reservoir in the Gaseous mode	
	5.3. Calculation of parameters of gas in the operation of UGS	
	5.4. Study modes of injection-production wells during underground gas storage	
	5.5. Underground gas storage of waste oil and condensate field	
	5.6 Technical and economic analysis of performance indicators PSG	
VR2.4- V2.15	6Technology building underground mine lining sheets type	
VR2.5- V2.15	6.1 Flow charts mine lining sheets hazonaftoshovysch	
VR2.6- V2.15	6.2 Methods gas storage facilities workings mine lining sheets	
	6.3 Defining workings, underground storage tanks mine lining sheets	9
	type	
	6.4 Method of computing optimal parameters workings-capacity and assess their strength	
VR2.4- V2.15	7 construction technology of underground tanks in salt deposits.	
VR2.5- V2.15	7.1 Physico-chemical basis of the process of dissolution of salt	
VR2.6- V2.15	7.2 Methods for construction of underground storage in salt deposits	9
	7.3 Technology in the construction of underground tanks salts	
	7.4 Operation of gas storage in salt domes	
VR2.4- V2.15	8 Alternative construction of underground gas storage facilities	
VR2.5- V2.15	8.1 Technology kamufletnymy construction of underground	0
VR2.6- V2.15	explosions	9
	8.2 Technology building insulated underground storage facilities	
VR2.7- V2.15	9 Precautions when operating underground gas storage	8
	PRACTICAL TRAINING	40
VR2.4- V2.15	1Decision of situational learning problems similar to those found	40
VR2.5- V2.15 VR2.6- V2.15	in the specialist can its activities	
	TOTAL	120

6 KNOWLEDGE PROGRESS TESTING

Certification of student achievement is accomplished through transparent procedures based on objective criteria in accordance with the University Regulations "On Evaluation of Higher Education Applicants' Learning Outcomes".

The level of competencies achieved in relation to the expectations, identified during the control activities, reflects the real result of the student's study of the discipline.

6.1 GRADING SCALES

Assessment of academic achievement of students of the Dnipro University of Technology is carried out based on a rating (100-point) and institutional grading

scales. The latter is necessary (in the official absence of a national scale) to convert (transfer) grades for mobile students.

The scales of assessment of learning outcomes of the NTUDP students

Rating	Institutional
90 100	Excellent
74 89	Good
60 73	Satisfactory
0 59	Failed

Discipline credits are scored if the student has a final grade of at least 60 points. A lower grade is considered to be an academic debt that is subject to liquidation in accordance with the Regulations on the Organization of the Educational Process of NTUDP.

6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES

The content of diagnostic tools is aimed at controlling the level of knowledge, skills, communication, autonomy, and responsibility of the student according to the requirements of the National Qualifications Framework (NQF) up to the 7th qualification level during the demonstration of the learning outcomes regulated by the work program.

During the control activities, the student should perform tasks focused solely on the demonstration of disciplinary learning outcomes (Section 2).

Diagnostic tools provided to students at the control activities in the form of tasks for the intermediate and final knowledge progress testing are formed by specifying the initial data and a way of demonstrating disciplinary learning outcomes.

Diagnostic tools (control tasks) for the intermediate and final knowledge progress testing are approved by the appropriate department.

Type of diagnostic tools and procedures for evaluating the intermediate and final knowledge progress testing are given below.

Diagnostic and assessment procedures

INTERMEDIATE CONTROL			FINAL ASSESSMENT		
training sessions	diagnostic tools	procedures	diagnostic tools	procedures	
lectures	control tasks for	task during lectures		determining the average	
	each topic		reference work	results of intermediate	
practical	control tasks for	tasks during	(CCW)	controls;	
	each topic	practical classes			
	or individual task	tasks during		CCW performance during	
		independent work		the examination at the	
		_		request of the student	

During the intermediate control, the lectures are evaluated by determining the quality of the performance of the control specific tasks. Practical classes are assessed by the quality of the control or individual task.

If the content of a particular type of teaching activity is subordinated to several descriptors, then the integral value of the assessment may be determined by the weighting coefficients set by the lecturer.

Provided that the level of results of the intermediate controls of all types of training at least 60 points, the final control can be carried out without the student's immediate participation by determining the weighted average value of the obtained grades.

Regardless of the results of the intermediate control, every student during the final knowledge progress testing has the right to perform the CDF, which contains tasks covering key disciplinary learning outcomes.

The number of specific tasks of the CDF should be consistent with the allotted time for completion. The number of CDF options should ensure that the task is individualized.

The value of the mark for the implementation of the CDF is determined by the average evaluation of the components (specific tasks) and is final.

The integral value of the CDF performance assessment can be determined by taking into account the weighting factors established by the department for each NLC descriptor.

6.3 EVALUATION CRITERIA

The actual student learning outcomes are identified and measured against what is expected during the control activities using criteria that describe the student's actions to demonstrate the achievement of the learning outcomes.

To evaluate the performance of the control tasks during the intermediate control of lectures and practicals the assimilation factor is used as a criterion, which automatically adapts the indicator to the rating scale:

$$O_i = 100 \text{ a} / \text{m}$$

where a - number of correct answers or significant operations performed according to the solution standard; m - the total number of questions or substantial operations of the standard.

Individual tasks and complex control works are expertly evaluated using criteria that characterize the ratio of competency requirements and evaluation indicators to a rating scale.

The content of the criteria is based on the competencies identified by the NLC for the Bachelor's level of higher education (given below).

General criteria for achieving learning outcomes 7th qualification for LDCs (BA)

Integral competence is the ability to solve complex problems and specialized practical problems in a particular area of professional activities or in a learning process that involves the use of certain theories and methods of the relevant scientific areas and characterized by complexity and

conditions uncertainty.

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation		
Knowledge				
◆ Conceptual	- A great - proper, reasonable, sensible. Measures the	95-100		
knowledge acquired	presence of: - conceptual knowledge; - a high degree of			
during the training and	state ownership issues; - critical understanding of the main			
professional activities,	theories, principles, methods and concepts in education and			
including some	careers			
knowledge of modern	A non-gross contains mistakes or errors	90-94		
achievements;	The answer is correct but has some inaccuracies	85-89		
critical	A correct some inaccuracies but has also proved insufficient	80-84		
understanding of the	The answer is correct but has some inaccuracies, not	74-79		
main theories,	reasonable and meaningful	, , , ,		
principles, methods,	A fragmentary	70-73		
and concepts in	A student shows a fuzzy idea of the object of study	65-69		
education and careers	Knowledge minimally satisfactory	60-64		
	Knowledge unsatisfactory	<60		
	Ability	\00		
• solving complex		95-100		
problems and	The answer describes the ability to:identify the problem;	<i>)</i> 3-100		
unforeseen problems in	- formulate hypotheses;			
specialized areas of	* *			
professional and/or	- solve problems;			
training, which	- choose adequate methods and tools;			
involves the collection	- collect and interpret logical and understandable information;			
	<u> </u>			
and interpretation of information (data),	- use innovative approaches to solving the problem	00.04		
choice of methods and	The answer describes the ability to apply knowledge in	90-94		
tools, the use of	practice with no blunders	05.00		
· ·	The answer describes the ability to apply knowledge in	85-89		
innovative approaches	practice but has some errors in the implementation of a			
	requirement	00.04		
	The answer describes the ability to apply knowledge in	80-84		
	practice but has some errors in the implementation of the			
	two requirements	74.70		
	The answer describes the ability to apply knowledge in	74-79		
	practice but has some errors in the implementation of the			
	three requirements	70.72		
	The answer describes the ability to apply knowledge in	70-73		
	practice but has some errors in the implementation of the			
	four requirements	(5, (0)		
	The answer describes the ability to apply knowledge in	65-69		
	practice while performing tasks on the model	60.64		
	A characterizes the ability to apply knowledge in	60-64		
	performing tasks on the model, but with uncertainties			
	The level of skills is poor	<60		
Communication				
• report to specialists	- Fluent problematic area. Clarity response (report).	95-100		
and non-specialists of	Language - correct;			
information, ideas,	net;			
problems, solutions and	clear;			

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation
their experience in the	accurate;	
field of professional	logic;	
activity;	expressive;	
• the ability to form an	concise.	
effective	Communication strategy:	
communication strategy	coherent and consistent development of thought;	
	availability of own logical reasoning;	
	relevant arguments and its compliance with the provisions	
	defended;	
	the correct structure of the response (report);	
	correct answers to questions;	
	appropriate equipment to answer questions;	
	the ability to draw conclusions and formulate proposals	
	Adequate ownership industry issues with minor faults.	90-94
	Sufficient clarity response (report) with minor faults.	
	Appropriate communication strategy with minor faults	
	Good knowledge of the problems of the industry. Good	85-89
	clarity response (report) and relevant communication	
	strategy (total three requirements are not implemented)	
	Good knowledge of the problems of the industry. Good	80-84
	clarity response (report) and relevant communication	
	strategy (a total of four requirements is not implemented)	
	Good knowledge of the problems of the industry. Good	74-79
	clarity response (report) and relevant communication	
	strategy (total not implemented the five requirements)	
	Satisfactory ownership issues of the industry. Satisfactory	70-73
	clarity response (report) and relevant communication	
	strategy (a total of seven requirements not implemented)	
	Partial ownership issues of the industry. Satisfactory clarity	65-69
	response (report) and communication strategy of faults	
	(total not implemented nine requirements)	
	The fragmented ownership issues of the industry.	60-64
	Satisfactory clarity response (report) and communication	
	strategy of faults (total not implemented 10 requirements)	
	The level of poor communication	<60
	Autonomy and responsibility	
 management actions 	- Excellent individual ownership management	95-100
or complex projects,	competencies focused on:	
responsible for	1) management of complex projects, providing:	
decision-making in	- exploratory learning activities marked the ability to	
unpredictable	independently evaluate various life situations, events, facts,	
conditions;	detect and defend a personal position;	
 responsible for the 	- the ability to work in a team;	
professional	- control of their own actions;	
development of	2) responsibility for decision-making in unpredictable	
individuals and/or	conditions, including:	
groups	- justify their decisions the provisions of the regulatory	
• the ability to continue	framework of sectoral and national levels;	
study with a high	- independence while performing tasks;	
degree of autonomy	- lead in discussing problems;	

descriptors NLC	Requirements for knowledge, communication,	Indicator
1	autonomy and responsibility	evaluation
	- responsibility for the relationship;	
	3) responsible for the professional development of	
	individuals and/or groups that includes:	
	- use of vocational-oriented skills;	
	- the use of evidence from independent and correct	
	reasoning;	
	- possession of all kinds of learning activities;	
	4) the ability to further study with a high degree of	
	autonomy, which provides:	
	- degree possession of fundamental knowledge;	
	- independent evaluation judgments;	
	- high level of formation of general educational skills;	
	- search and analysis of information resources	
	Confident personality possession competency management	90-94
	(not implemented two requirements)	
	Good knowledge management competencies personality	85-89
	(not implemented three requirements)	
	Good knowledge management competencies personality	80-84
	(not implemented the four requirements)	
	Good knowledge management competencies personality	74-79
	(not implemented six requirements)	
	Satisfactory ownership of individual competence	70-73
	management (not implemented seven requirements)	
	Satisfactory ownership of individual competence	65-69
	management (not implemented eight claims)	
	The level of autonomy and responsibility fragmented	60-64
	The level of autonomy and responsibility poor	<60
	The level of autonomy and responsionity pool	\00

7 TOOLS, EQUIPMENT, AND SOFTWARE

Technical training tools via multimedia software. Distance learning platform Moodle.

8 RECOMMENDED SOURCES

- 1. Reference case oil / under total. Ed. BC Boyko, PM Kondrati, RS Yaremiychuka. K .: Lvov, 1996.
- 2. Handbook of Petroleum operatives complex / V.V.Rozhonyuk, LA KHACHIKYAN, MA Hryhil, AS Udalov, VP Nikishin. Kyiv "Sprout", 1998. -431 p.
- 3. Reference gas transportation company employee / under the general editorship of academician Ukrainian Oil and Gas Academy A.A.Rudnika Moscow, Kyiv, "Sprout", 2001. -431 p.
- 4. Dudley, MA The processes of underground gas storage: a textbook. / MA Doodle, L.N.Shyrin, V.O.Salov; N-of Education and Science of Ukraine, Nat. Hearne. Univ., 2nd ed., Ext. . D .: NSU, 2014. 422 p.

- 5. RA Kantyukov Kompressornыe and hazoraspredelytelnыe station: uchebnoe posobye / RA Kantyukov, VA Maksimov, MB Hadyev. Kazan: Kazan hosunyversytet them. YOU. Ulyanov-Lenin, 2005. 412 p.
- 6. Construction of tank farms and hazonaftoshovysch. Textbook for Universities / YM Bull, V. GLOBE, VP Nagorny, Y. Venhertsev. K .: "VIPOL", 2000.- 606 p.
- 7. Hazonapolnytelnыe and hazoraspredelytelnыe station: Uchebnoe posobye. / Pod Society. Ed. YD Zemenkova Tyumen: Publishing "Vektor Buk", 2003.-336 with.
- 8. Design and operation nasosnыh and kompressornыh stations: Textbook for Universities / AM Shammazov, VN Alexandrov, AI Holyanov et al. M .: OOO "Nedra-Byznestsentr", 2003. 404 p.

Educational edition

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

"Processes of underground storage of hydrocarbons" 185 "Oil and gas engineering and technology"

Prepared for publication
Dnipro University of Technology.
Certificate of registration in the State Register, control number 1842
49005, Dnipro, Dmytro Yavornytskoho Ave. 19